Skip to content
Cloud School Docs
  • Cloud School TV
    • Service status
    • Technical Support
    • CloudSchool.gr
  • Free content
    • Docs
    • Blog
    • Videos
    • Dictionary
    • Downloads
  • Courses
    • Instructor-led training (ILT)
    • Self-paced training (SPT)
  • Books
    • Amazon
    • Draft2Digital
    • Leanpub
    • Google Books
    • Kotobee Books
  • Contact
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F1 Fi

F1 score

F1 score is the weighted average (harmonic mean) of precision and recall. The F1 score is calculated by the following formula:

F1 score = (2 x Precision x Recall)/(Precision + Recall)

The more the precision and recall metrics deviate from each other, the worse their harmonic mean (i.e. the F1 score).

Related Terms

  • PRC
  • recall
  • specificity
  • accuracy
  • adversarial machine learning

Search content

External links

  • Microsoft Learn
  • Microsoft Credentials
  • Microsoft Learn Shows
  • Azure Architecture Center
  • Azure portal
  • M365 portal
  • CompTIA Training
  • CertNexus Certifications
  • AWS portal
  • GCP console
  • Kaggle ML community
  • DeepLearning.ai
  • Azure Blog
  • Azure Updates
  • Azure Friday
  • Github Copilot
  • Azure Github repos
  • Azure WAF
  • Azure CAF
  • Azure Tips and Tricks
  • Azure Charts
  • M365 Maps
  • Endjin Azure weekly newsletter
  • Build5Nines newsletter
  • Stay current with Azure
© 2025 Cloud School Docs • Built with GeneratePress